Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins.
نویسندگان
چکیده
Glycosylphosphatidylinositol-anchored proteins on the egg surface have been proposed to play a role in gamete fusion on the basis of in vitro experiments. We tested this hypothesis by asking if oocyte GPI-anchored proteins are required for fertilization in vivo. Oocyte-specific knockout mice were created using the Cre/loxP system to delete a portion of the Pig-a gene, which encodes an enzyme involved in GPI anchor biosynthesis. Conditional Pig-a-knockout females are infertile, and eggs recovered from the females after mating are unfertilized. In in vitro assays, the knockout eggs are severely deficient in their ability to fuse with sperm. These results demonstrate that GPI-anchored proteins are required for gamete fusion. Loss of the GPI-anchored complement of plasma membrane proteins could prevent fusion by altering the organization and function of GPI-anchored protein-containing lipid domains. Alternatively, a single GPI-anchored protein may be required in the fusion process. To distinguish between these possibilities, we have begun to identify the GPI-anchored proteins on the egg surface. We have identified one egg GPI-anchored protein as CD55, an approximately 70 kDa complement regulatory protein. It has previously been found that CD55-knockout mice are fertile, demonstrating that CD55 is not essential for fertilization. This finding also means that the presence of the full complement of egg GPI-anchored proteins is not necessary for gamete fusion. Other egg GPI-anchored proteins acting in the fusion process can now be investigated, with the goal of understanding the mechanism of their function in sperm-egg fusion.
منابع مشابه
Gene knockouts that cause female infertility: search for novel contraceptive targets.
The gene knockout technology has revolutionized the fertility/infertility field. It has revealed several essential previously undiscovered molecules, new insights and novel mechanisms involved in steps of the fertility cascade in females. Using database and literature search, knockouts of at least 83 genes were discovered that demonstrated an effect on fertility of female mice. These effects ra...
متن کاملP-65: Maternal Effect Genes in Mammalian Reproduction
Background: Regulation of gene expression in mammalian embryos is not completely known. Pre-implantation embryos need maternal RNA and proteins synthesized during oogenesis, to regulate development before mater-embryo transition, as the grown oocyte and the 1-cell zygote are transcriptionally silent. There are some oocyte-specific genes called maternal effect genes which may account for this ea...
متن کاملTEX101, a glycoprotein essential for sperm fertility, is required for stable expression of Ly6k on testicular germ cells
TEX101, a germ cell-specific glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein, is associated with Ly6k during spermatogenesis in testis. Although both Tex101(-/-) and Ly6k(-/-) mice can produce morphologically intact spermatozoa, both knockout mice show an infertile phenotype due to a disorder of spermatozoa to migrate into the oviduct. Since Ly6k specifically interacts with TEX101, co...
متن کاملI-13 Infertility with Impaired Zona Pellucida Adhesion of Spermatozoa from Mice LackingTauCstF-64
Background: Fertilization is a multistep process requiring spermatozoa with unique cellular structures and numerous germ cell-specific molecules that function in the various steps. In the highly coordinated process of male germ cell development, RNA splicing and polyadenylation help regulate gene expression to ensure formation of functional spermatozoa. Male germ cells express tauCstF-64 (Cstf2...
متن کاملTex101 is essential for male fertility by affecting sperm migration into the oviduct in mice.
Dear Editor, Sperm transport in the female genital tract is physiologically important for mammalian fertilization. The female reproductive system contains multiple natural selective barriers, such as successful uterotubal junction (UTJ) migration and zona pellucida (ZP) binding, to ensure sperm with normal motility and morphology to transmit into oviduct for fertilization (Yanagimachi, 1994; Ik...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 116 Pt 11 شماره
صفحات -
تاریخ انتشار 2003